

MAR Plus For Electrical Engineering

Ohm's and Kirchhoff's laws

Electrical Network

Analysis of Electrical Circuits

Solution with MAR Plus

Easy steps to MAR Plus

Ohm's and Kirchhoff's laws

Ohm's Law

The current in a circuit is directly proportional to the voltage and inversely proportional to the resistance:

 $I[A] = \frac{U[V]}{R[\Omega]}$

Kirchhoff's First Law (Kirchhoff's Current Law)

The sum of the currents flowing towards a node is equal to the sum of currents flowing away from that node:

 $\sum_{k=1}^{n} I_{k} = 0$

Kirchhoff's Second Law (Kirchhoff's Voltage Law)

The sum of the electrical potential differences around any closed loop is zero:

 $\sum_{j=1}^m U_j = 0$

From Kirchhoff's First Law you obtain the joint resistance
$$R_{ges}$$
 of a parallel connection of M resistances:
$$\frac{1}{R_{Ges}} = \sum_{k=1}^{M} \frac{1}{R_k}$$

From Kirchhoff's Second Law you obtain the joint resistance $\mathsf{R}_{\mathsf{ges}}$ of a serial connection of M resistances:

$$R_{Ges} = \sum_{k=1}^{M} R_k$$

Electrical Network

A circuit can be graphically displayed like this:

Ohm's and Kirchhoff's laws are used to solve the electrical network problem defining a system of linear equations:

Linear equation systems are commonly used in many professional areas, e. g. in engineering, economics and finance.

An important application of linear equation systems are current flow considerations in electrical networks.

The network problem discussed here is kept very simple to show the general idea.

Analysis of Electrical Circuits

To solve systems of equations, present the information in matrix form:

 $[A_{i,j}] \{x_i\} = \{b_i\}$

Entering the values of our example we obtain the following system of equations with the current in the circuit as the vector of unknowns:

[1	-1	-1	0	0	0	$\left \left[I_0 \right] \right $	$\begin{bmatrix} 0 \end{bmatrix}$
0	1	0	-1	0	-1	$ I_1 $	0
0	0	284	0	0	0		142
0	120	-284	100	20	0	$ I_3 ^{=}$	0
0	0	0	1	-1	1	$ I_4 $	0
0	0	0	-100	0	60	$\left I_{5} \right $	[0]

Those values of the current in the circuit I_i which satisfy all equations simultaneously are the solution of the linear equation system:

 $I_i = \{1.3; 0.8; 0.5; 0.3; 0.8; 0.5\}$ for i = 0, 1, ... 5

Sort the rows in such a way that therefore no zeros on the diagonal of the coefficient matrix.

Final sequence of equations is: (1) - (2) - (4) - (5) - (3) - (6)

There are three possible outcomes for a linear equation system

- no solution
- a unique solution
- infinite number of solutions

Easy steps to MAR Plus

Solution with MAR Plus

The calculation with MAR Plus is easy and straightforward :

- 1
 2
 3
- Enter the number of equations
- ^b Enter the coefficients of the matrix and the column vector (augmented matrix)
- Click on the "Run!" button

Linear equation system								
Save Lo	ad Sm <u>a</u> rtCal	culator Deci <u>r</u>	<u>m</u> al Help <u>B</u>	ack <u>E</u> xit MA	R			
Enter nu	umber of equation	ns Facti	or for matrix A: 1.	0	Degree Radian		Run!	3
	1	2	3	4	5	6	Ы	
1	1	-1	-1	0	0	0	0	1
2	0	1	0	-1	0	-1	0	2
\bigcirc	0	0	284	0	0	0	142	3
	0	120	-284	100	20	0	0	4
5	0	0	0	1	-1	1	0	5
6	0	0	0	-100	0	60	0	6
	-		-					

 $U_{0} \downarrow = \uparrow I_{0} I_{2} \downarrow R_{2} I_{3} \downarrow R_{3} I_{5} \downarrow R_{5}$ trix) $I_{1} I_{0} I_{2} \downarrow R_{2} I_{3} \downarrow R_{3} I_{5} \downarrow R_{5}$

The resulting vector gives the values of the current in the circuit:

 Result matrix (linear) 	equati 💶 💷 🗾	
Vari.	Results:	
x 1	1.3	<i>[]</i>
x 2	.8	1
x 3	.5	1
x 4	.3	
x 5	.8	1
x 6	.5	1