

In 5 steps to MAR Cal – Advanced Users

Generating pairs of values

Using standard functions

Declaring constants

Applying the scientific format

Inserting comments

Generating pairs of values

Let's look at an exponential function, e.g. $\frac{e^x \cdot (x^2 - 4x + 6)}{x^4}$, to show how to solve a formula for different x values:

Define

Varia

Start

End

Step

Enter the formula in the input field: exp(x)*(x^2-4*x+6)/x^4

To get pairs of values, instead of a single solution, just click on the button "Pairs of values"

A pop-up window comes up. Enter the input:

VariablexStart value1End value5Step width1

You obtain the resulting pairs of values in a separate window.

To close the result window click on the button "Close". You can reopen it via the menu "ShowList".

ariable	:		[
			F	unction values (universal calcula	itor)			
e alue	× 1			Sa	ve as	C	Close		
alue	ue 5			Max-min v	alues of point:	s Max-min va	Max-min values of curve		
idth	Run!	1		Copyright (c) 1999-2012 by MAR Team. All rights reserved. : (11:09:01 / 05-23-2012) Function: exp(x)"(x^2-4*x+6)/x^4					
				Nr.	Variable	Value of function			
				1 2 3 4 5	1 2 3 4 5	8.15484548537711 .92363201236633 .74390877493287 1.2796441414018 2.6120716002053	5		
via th	ne menu	"Show <u>L</u>	Hint ist".						

Using standard functions

As an example, here's a computation with the natural logarithm and the sine function, e.g.: $log_e 25 + \sin 80^\circ$

Enter the following term in the formula input field: **In(25)+sin(80)**

You need to put brackets around the antilogarithm (in our case the number 25), as well as the angle of the trigonometric function.

Examples of standard functions defined in MasterAllRound:

- cot(x) Cotangent of x
- arccos(x) Arcosine of x
- tanh(x) Hyperbolic tangent of x
- arsinh(x) Inverse hyperbolic sine of x
- Ig(x) Logarithm of x to the base 10
- abs(x) Absolute value
- exp(x) Natural exponential function (e = 2.71828...)
- sqr(x) Square root of x

🖊 Universal c	alculator									
File Settings	Show <u>L</u> ist	Sm <u>a</u> rtCalculator	@Sub-equa <u>t</u> io	on Help	<u>B</u> ack <u>E</u> xit	t MAR				
Enter input:	Degrees ar	e on		P	airs of values					
In(25)+sin(80)										
= 4.2037			•	Run!	Clear input	Group	Line up	Line down	Delete line	Undo

See menu "Help" for a compilation of all standard functions.

Hint

Hint

Hint

Use menu "Settings" to toggle between degrees and radians.

Declaring constants

Let's assume, you wish to calculate $c = 5 \cdot a - 2 \cdot b$ where a=5 and b=10

Proceed as follows:

```
In the formula input field, enter:
..a = 5"
"b = 10"
"c = 5*a - 2*b"
```

The user interface of the universal calculator looks now as follows:

The result $_{c} = 5^{\circ}$ is in the result field.

The formula $c = 5^*a + 2^*b^*$ is in the formula storage field.

The declared constants $a = 5^{\circ}$, and $b = 10^{\circ}$ are in both the constant storage and the input storage. The calculated number symbol $_{c} = 5^{\circ}$ is also stored in the constant storage.

Hint

You can enter number symbols in the formula storage. If the constant derives from a formula, you need to use the formula input field.

Easy steps to MAR Cal

Do not forget to finalize your input with the return key.

Hint

(1)

(2)

(3)

Applying the scientific format

You can use the **scientific format**. For example:

1.2E3 + 5.5 delivers as result **1205.5**

W1 = (2.5e-3)*2 delivers as result W1=.005

w2 = 3.0e5 / (1.5E6) delivers as result w2=.2

ABC = (3! + LG(100) + 2*sin(30))^2 + 1.5E-2 delivers as result ABC=81.015

See menu "Settings" to change the font size of the input field.
<i>Hin</i> Use menu "Settings" to toggle between degrees and radians.
Hin The symbol "!" represents the factorial

He Un	iversal cal	culator									_	
File	Settings	Show <u>L</u> ist	Sm <u>a</u> rtCalculator	@Sub-equa <u>t</u> io	on Help	<u>B</u> ack	<u>E</u> xit M	1AR				
Ente	r input:	Degrees a	e on		P	airs of val	ues					
ABC = (3! + LG(100) + 2*sin(30))^2 + 1.5E-2												
AB	C = 81.(015		•	Run!	Clear inj	put	Group	Line up	Line down	Delete line	Undo
Input	storage:											
	BC = (3! + L 2 = 3 0e5 /	.G(100) + 2*s (1.5E6)	in(30))^2 + 1.5E-2									
	/1 = (2.5e-3	(1.500)]×2										
□ 1.	2E3 + 5.5											

Inserting comments

You can add a **comment** to your input line. To initiate a comment, use the single **apostrophe** (').

Example:

Comment in the constant input window: b=20.55 'Width in metres I=30.75 'Length in metres h=25.45 'Height in metres

Comment in the formula input field: Volume = b * I * h ' Volume in cubic metres

Hint You can place any number of blank characters before or after the apostrophe. After the apostrophe, you can enter text using any symbol.

